

2018

Dr Mahdi Aiash

4/24/2018

On Assessing the Impact of Ports
Scanning on the Target
Infrastructure

1. Introduction

A port scan is a method for determining which ports on a network are open. As ports on a

computer are the place where information is sent and received, port scanning is analogous to

knocking on doors to see if someone is home. Running a port scan on a network or server

reveals which ports are open and listening (receiving information), as well as revealing the

presence of security devices such as firewalls that are present between the sender and the target.

This technique is known as fingerprinting. It is also valuable for testing network security and

the strength of the system’s firewall. Due to this functionality, it is also a popular

reconnaissance tool for attackers seeking a weak point of access to break into a computer.

Generally speaking, ports scanning probes a number of well-known ports (for TCP and UDP)

by sending raw network packets to these ports, and based on the responses from these ports, it

classifies ports in one of these states:

• Open or Accepted: The host sent a reply indicating that a service is listening on the

port.

• Closed or Denied or Not Listening: The host sent a reply indicating that connections

will be denied to the port.

• Filtered, Dropped or Blocked: There was no reply from the host.

2. Problem Definition

Fingerprinting and port scanning are the longest stage during pentesting engagements. The

thoroughness and completeness of this stage is a key for the success of the vulnerability

assessment and exploitation stages. Therefore, vendors have developed large number of port

scanning tools (both commercial and open source). However, experienced pentesters might

choose to deploy their own bespoke tool that suits their needs. It is important also to highlight

that there are dozens of different types (techniques) of port scanning which are different from

each other in the following ways:

• The way they parse the response of scanned ports, this effectivity affects the accuracy

of the different scans.

• Different types of port scans send a distinct volumes of raw packets to probes the

scanned ports consequently resulting in a varying level of overhead that might

potentially affect the performance of the scanned host and network.

For pentesters, it is crucial to understand the difference between the scan techniques, and to be

able to choose the appropriate one (or combination) for a given task. Therefore, in this report

we conduct an experiment to evaluate the accuracy of different scans and to assess their impact

on the scanned infrastructure. The experiment is based on testbed created using Vmware

workstation and simulates a traditional production infrastructure. We conducted the following

two experiments:

• Experiment one: We developed our own information gathering tools that runs ping

sweep to discover live hosts and then a TCP port scan these hosts. The tool finally

performs banners grabbing to identify the version of the service listening on the open

ports. We evaluated the impact of using this tool on the performance of the scanned

network in the testbed in terms of latency and the number of the generated packets.

• Experiment two: We used Nmap (a well-known scanning tool) to run different types of

scans (both TCP and UDP) and compare the accuracy and the resulted overhead of

these scans.

We believe that the results presented in this report will help security researchers and pentesters

understanding the difference between port scan techniques and assess the potentially impact of

their reconnaissance on the target infrastructure.

3. Testbed setup

The lab test will take place on a LAN network designed for the purpose of this project as
shown in Fig 1:

Figure 1 Testbed

As shown in figure 1, a Linux firewall is placed between the internal and external network in

order to protect the internal network and prevent unauthorised access from the Internet. This

network is designed and built in a virtualised environment and is constructed close to a real

enterprise network design. The attacker (scanner) machine located in the outside network will

then run a python port scan script against the LAN network (192.168.1.0/24). Another

computer (192.168.1.2) located in the target network will be closely monitoring the

performance of the network without alerting the attacker that their actions are observed.

For the purpose of this project the LAN network will be monitored in two different occasions.

In the first experiment a threshold is set as a base-line for acceptable level of network traffic,

where in the second scenario a port scan attack will be launched against the target network

while using the same base-line in the first scenario the impact will be measured and the gathered

data will be analysed further. In experiment 2 of this project, the network design will remain

the same but Nmap will be used to evaluate different scanning techniques.

3.1. Installation Phase

Both the attacker’s machine which run Kali-Linux OS and the target network machines were

installed using VMware workstation Pro 12 and the network interfaces were configured

according to the network design in figure 1.

3.1.1. Monitoring Software
To monitor the LAN performance, the PRTG monitoring software is downloaded from the

“www.paessler.com website to collect data and statistics from all the components in the

network. After completing the installation of PRTG, the user interface opens up the standard

browser and automatically starts discovering the network in the background as in Fig 2.

Additionally, users can launch this software using the PRTG enterprise console which uses a

native user interface.

3.1.2. Installing and Setting up Iptables firewall on Ubuntu Server:

Iptables is a Linux based firewall developed by Netfilter project (netfilter.org) and has been a

pre-installed application in Linux kernels released after early 2001. Iptables are divided into

two main components (userland administration program and kernel modules) where both the

userland and the kernel are compiled. The latest releases of Linux distributions provide pre

built-in kernels that have Iptables compiled in and does not require it to be installed as a

separate feature. Many Netfilter subsystems such as packet filtering and connection tracking

capabilities are included in the kernel source code and are enabled by default. It is very

important to configure and compile Linux kernel appropriately as any misconfiguration error

can lead to the Iptables firewall not functioning properly and risk the system becoming

Figure 2: PRTG

http://www.netfilter.org/

vulnerable to more serious threats. All the packet filtering and other matching operations in

Iptables are part of the kernel process.

After setting up the network as in the Figure 1, we start the process of configuring the firewall

as follows:

• A network that uses Iptables firewall works by accepting packets that are mandatory in

order for the network to function, all other packets are logged or dropped which

provides an important information for log analysing tools. The firewall has two NICs

with the following IP addresses:

Eth0: 10.1.1.0/24

Eth1: 192.168.1.0/24

The objective of having two different NICs is to configure the firewall and enable eth1

network access the internet and use the web, FTP, mail and other services. A good way

to start configuring Iptables firewall is to flush all the existing rules using the Iptables

“–F” option. The next step is to create the anti-spoofing rules which are an essential

factor of configuring any firewall. Attackers achieve this technique by faking their

source address and make it resemble the internal network of an organisation. To avoid

the danger of attackers bypassing the firewall a simple rules are created and assigned

to the internet interface that inspects the source address of all incoming packets and

drops any packets with a source address that is identical to the trusted internal addresses

as shown in Fig 3.

LAN users are allowed to access the Web and the FTP server through the internet. The

firewall is configured to allow the inbound and outbound packets destined for port 80,

20, and 21 as shown in Fig 4.

Figure 3: Iptables rules

3.1.3. Installing and Setting up PSAD

PSAD is an application that runs on Linux hosts which monitors the Iptables log messages in

order to detect, alert, and block a port scan or any other malicious activities that are taking

place. Originally, PSAD started as part of the Bastille Linux project in the late 90s. Bastille

Linux Project developers decided it was time to develop a network intrusion detection system

(IDS). The idea of the team was to create something new and different from the existing IDS

and that fits well with the Linux Firewall. As a result, the PSAD software was launched in 2001

to actively monitor and analyse the Iptables logs. For instance, in the event of TCP port scan,

the PSAD is able to inspect the TCP flags and identify the type of the TCP scan e.g. SYN,

XMAS, FIN, etc.). PSAD also makes use of many ICMP, UDP, and TCP signatures stored in

the Snort IDS database to detect any suspicious traffic. For years, Firewalls have been the

inline device to safeguard modern day networks and are usually positioned at the entry and exit

point of the network. Due to some complexity in configuring firewall rules and the inability to

block attacks at the higher level of the protocol stack, security experts have recommended that

Firewalls should never be the only line of defence in any network. Therefore, combining

Firewalls with PSAD will provide a strong security protection in any network.

PSAD is downloaded from the default repositories of Ubuntu. To obtain the PSAD program

from Ubuntu’s Advanced Packaging Tool (APT) the command “sudo apt-get install PSAD”

was issued. During the installation process several pieces of input are requested including the

Postfix mail server (Fig 5) which is an e-mail address where any alerts generated will be sent

to in the event of unusual activity within the network. The PSAD IDS will also allow the

visualisation of the security status of the entire network which helps humans to recognise visual

patterns than thousand lines of log messages.

Figure 4: Iptables LAN rules

The PSAD log analyser relies heavily on the Iptables policy configuration of that system.

However, there are few necessary configurations needed in order PSAD to function properly.

All the PSAD daemons references are defined under the “/etc/psad/psad.conf” main file which

contains many configuration variables and controls the different aspect of how PSAD works.

Since this is a large file, most of the configurations were not modified. The most important

configuration variable are highlighted in Fig 6.

Figure 5: PSAD Installation

3.1.4. PRTG Configuration

After setting up the Apache and FTP servers, we move on to configure the PRTG to measure

the performance of the elements of our testbed. As shown in Fig 7, the PRTG is started and all

the current devices of the network are discovered. We can see an overall view of multiple

instances of all network devices in hierarchal and categorised way. This was made easy by the

dashboard feature in PRTG where user have the option to choose different dashboard viewers.

Furthermore, the current state of each device is visible to admin which eases the

troubleshooting method in the event of failure.

Figure 6:

Figure 7: PRTG

4. The Conducted Experiments:

After carefully configuring the network in the previous sections, different tests have been

performed to inspect the impact of port scans on a network infrastructure. This section explains

the conducted experiments and presents the results obtained. Two different experiment are

conducted in this project. In the first experiment, an external scan has been performed in which

the LAN network was scanned from the Internet (external network). Using PRTG network

monitoring tool, the network was monitored for a period of around 20 minutes in three different

occasions. Then the overall network performance is compared before and during the scan. In

this scan we used a bespoke tool rather than relying on existing scanning tools.

 In the second experiment, the scan was conducted and different scanning techniques were

performed using Nmap scanner. This experiment will assist a pen tester to choose the most

efficient scanning technique in terms of performance and OS detection accuracy.

4.1. The First Experiment

In order to simulate an external attack or a black-box pentesting, we developed our own script

that achieves:

• Ping Sweep: to discover live hosts in the LAN

• PortScanning: to identify open ports on the discovered, live hosts

• Banner Grabbing: After identifying the open ports, our script will fingerprint

discovered service as to be able to find out any vulnerabilities specific to the discovered

services.

The goal of this scenario is to evaluate how a detected port scan can impact the overall network

performance and increase latency.

4.1.1. Latency

In the Internet Protocol (IP) network Latency is defined to be the amount of time it takes for a

packet to travel from a source to a destination, or the time it takes from a source to destination

and back to the source, this is also known as Round Time Trip (RTT). There are numerous

ways network latency can occur including queuing delay, TCP handshake delay, routing and

switching delay. Common Internet applications such as FTP and HTTP utilize TCP to transfer

data from server to client. Because the TCP is a core protocol of the TCP/IP protocol suite and

uses the three-way handshake process prior exchanging data. This process can cause a total

packet loss to an already congested network by adding extra congestion. In this project latency

is referred to as the amount of time it takes for a LAN network user to access and retrieve data

from the external web and FTP servers. Multiple protocols were used including HTTP, FTP

and ICMP to generate some traffic across the network in order to calculate the latency and

response time of each protocol.

4.1.1.1. ICMP Latency:
The ping utility uses the ICMP protocol to test connectivity between two IP hosts. Ping works

by sending ICMP packet called echo-request to the IP host, and the host responds back with

the echo-reply. The built-in ping utility in windows is used to ping the 192.168.1.155 host and

to determine the RTT value. Multiple packets are sent before and during the scan. When the

network is operational accordingly and no scan is taking place, a user on the 192.168.1.0/24

network pings the 192.168.1.155 host (as the Gateway) and the result is recorded. The same

step is repeated during the scan and the RTT value is recorded and compared to the value pre

the scan. According to the results in in Figures 8 and 9, the RTT value was higher when the

scan was taking place. The maximum response time before the scan is 3ms, while this value

changes dramatically to a maximum of 146ms during the scan, which shows the significant

impact of port scan attack in terms of performance when all the defence mechanisms are in

place including Firewall and IDS/IPS

One of the advantages using PRTG tool is the ability to separate the performance of each

protocol. According to figure 10, the maximum RTT time is 2.20 msec which indicates that the

network performance is balanced and there are no unusual traffic patterns, otherwise an alarm

should have been generated and sent to the admin if the thresholds set by the administrator

were exceeded.

Figure 8: RTT value before the scan

Figure 9: RTT value during the scan

Viewing the graph in figure 11 clearly displays that the ping time or the time it takes for an

ICMP packet to travel back and forth to the destination. The port scan leads widely varying

RTT times and the maximum RTT reaches a staggering value of 210 msec. It is obvious that

the scan has impacted and degraded the overall network performance where most of the packets

sent across the network were encountering large delays.

4.1.1.2. HTTP Latency
Apache 2 Web server is installed on Linux machines. When everything is functioning below

the base line set for acceptable traffic level, users on the 192.168.1.0/24 network should access

the web server and other resources allocated to them with a minimum delay time. The speed

of which HTTP connection can be represented by the responses time, according to Fig 12, the

maximum response time for a user to access and retrieve data from the server is 39msec which

considered to be an acceptable level of performance since there no port scan or other attacks

occurring in the background of the network. Figure 13 illustrates a graph taken from the PRTG

monitoring tool which displays how ports scan effects the HTTP response time. This graph

Figure 10: ICMP RTT value pre the scan

Figure 11: ICMP RTT values during the scan

was taken when the port scan attack was scanning the network. In contrast to figure 13, the

maximum loading time recorded was 39 msec. However, the results were different when the

same user accessed the web server during the scan, where the maximum loading time was

63msec.

While the two results do not reflect a considerable delay, this could be ascribed to the fact that

we established only one HTTP connection, if we are to simulate the case of a large number of

HTTP connections (from the internal network), the delay will be considerably higher

4.1.1.3. FTP Latency

A file of 445672KB is downloaded from the FTP server in order to generate FTP traffic across

the network and to examine its performance. From figure 14, the maximum response time to

the FTP server is 4,208 msec. this value is expected to increase when the port scan test is

performed. Figure 15 shows the FTP performance during the port scan. The same file is

downloaded from the FTP server to generate some FTP traffic. Because the port scan was

conducted, the response time from the FTP server reaches an all-time high of 13,757msec

Figure 12: HTTP response time pre the scan

Figure 13: HTTP response time during the scan

which is almost close to the packet being dropped. It also took longer to download the file from

the FTP server compared to the pre scan time.

4.1.2. Analysing Iptables log file with PSAD

Reading log files can be challenging. PSAD is designed to analyse log messages and produce

the scan results in a graphical way, which allows users to understand and analyse the source of

the scan and its impact in terms of performance. Since PSAD interfaces with Gnuplot to deliver

and produce a graph of number of scan packets. From figure 16, we can see how the port scan

is impacting the performance levels of the network and ultimately this

will cause unwanted delay.

Figure 14: FTP response time pre the scan

Figure 15: FTP response time during the scan

Figure16: analysing Iptables log file with PSAD

4.2. The Second Experiment

In our first experiment we evaluated the impact of a running our scanning script on the network.

In this experiment, we will consider different types of port scanning. Therefore, we use Nmap

to run a number of scans and then compare between them in terms of accuracy and

performance.

4.2.1. Scan Accuracy
The accuracy of information is extremely important in port scanning, as inaccurate information

can be misleading for both a penetration tester and attacker. Nmap and other port scanning

tools often refer to open ports as filtered or open/filtered which indicates that the scanner is

unable to determine the correct state of the scanned port. Although Nmap has

exceptionally helpful options to enhance the performance of the scan and provides good scan

results, it is crucial not to rely for a single source. Using different scanner tools and

techniques does not only improve accuracy but it also allows the scanner to truly determine the

state of a particular port

A well-known feature of Nmap is the OS detection which is part of the first stages of mapping

out a network. This allows the user to figure out the remote OS version. Administrators often

perform fingerprinting in their network to identify any vulnerability and mitigate any possible

port scan probes from unauthorised users. Nonetheless, attackers find the OS detection very

useful, because it enables them to identify what kind of devices are on the target network.

Armed with this information, attackers are then able to make perceptive assumptions and

eliminate the need to try vulnerabilities associated with another OS version.

We summarize our scans’ result in Table 1. Each scan type prints out the OS details differently,

for instance some will display the OS in greater detail while others will printout limited

information of the OS. In order to determine the most accurate scan technique, Nmap reveal

the user the detection accuracy in form of percentage when the Nmap scan is completed.

Table 1: Port Scanning Accuracy

Scan
Technique

Target Device
Type

Vendor Family/Release Version Scan Duration
in seconds

Detection
Accuracy

Full Connect
scan

192.168.1.44 General
Purpose

Microsoft Windows Win 7 71.08 96%

192.168.1.45 General
Purpose

Linux Ubuntu 3.14 15.41 95%

192.168.1.49 General
Purpose

Microsoft Windows Server
2012

16.03 97%

SYN Scan 192.16..1.44 General
purpose

Microsoft Windows Win 7 25.41 97%

192.168.1.45 General
purpose

Linux Ubuntu 3.14 15.13 95%

192.168.1.49 General
purpose

Microsoft Windows Server
2012

16.48 96%

Fin Scan 192.168.1.44 General
purpose

Microsoft Windows Win 7 51.81 95%

192.168.1.45 General
purpose

Linux Ubuntu 2.4.20,
2.6.14-
2.6.32

99.17 93%

192.168.1.49 General
purpose

Microsoft Windows Server
2012

46.44 96%

XMAS Scan 192.168.1.44 General
purpose

Microsoft Windows Win 7 55.95 96%

192.168.1.45 General
purpose

Linux Ubuntu 2.4.20,
2.6.14-
2.6.32

99.09 93%

192.168.1.449 General
purpose

Microsoft Windows Server
2012

15.61 95%

Quick Scan 192.168..1.44 General
purpose

Microsoft Windows Win 7 14.90 94%

192.168.1.45 General
purpose

Linux 3.X 3.11-3.14 15.27 95%

192.168.1.49 General
purpose

Microsoft Windows Server
2012

16.22 95%

Intense scan 192.168.1.44 General
purpose

Microsoft Windows Win 7
ultimate
6.1

75.69 97%

192.168.1.45 General
purpose

Linux 3.X 3.11-3.14 29.86 s 95%

192.168.1.49 General
purpose

Microsoft Windows Server
2012
standard
6.2

80.77 s 98%

Slow
Comprehensive
scan

192.168.1.44 General
purpose

Microsoft Windows Win 7
ultimate
6.1

43.95 s 96%

192.168.1.45 General
purpose

Linux Ubuntu 3.11-3.14 30.13 s 97%

192.168.1.49 General
purpose

Microsoft Windows Server
2012
standard
6.2

79.44 s 98%

4.2.2. Performance

According to Table 2, the scan duration, raw packets sent, and raw packets received were of

various scan techniques were recorded. A total of 11 hosts were scanned ranging from

192.168.1.40 to 192.168.1.50. The goal of this experiment was to identify which scan type will

have the lowest impact on the network. It was clear that number of raw packets sent and

received had an influence on the level of performance in the network. The TCP connect scan

had the least impact in relation to the overall performance and particularly the raw packets sent

and received, because this type of scan does not require writing raw packets

but alternately uses the connect () system call provided by the operating system. On the other

hand, the TCP scan and intense scan have sent the highest raw packets of (1,683 MB).

Table 2: Different scan results

Scan
technique

Target Ports to
scan

Scan date &
Time

Scan
duration

Discovered
hosts

Raw-
packets
sent

Raw-
packets
received

Full connect 192.168.1.40-
50

All ports
(*)

27.08.16
11:26

96.94s 8 Hosts 364B 196B

SYN Scan 192.168.1.40-
50

All ports
(*)

27.08.16
11:29

63.74s 8 Hosts 1.683MB 1.37MB

FIN Scan 192.168.1.40-
50

All ports
(*)

27.08.16
11:32

51.93s 8 Hosts 1.534MB 1.358MB

XMAS Scan 192.168.1.40-
50

All ports
(*)

27.08.16
11:35

49.01s 8 Hosts 1.679MB 1.372MB

ACK Scan 192.168.1.40-
50

All ports
(*)

27.08.16
11:40

167.72.s 8 Hosts 1.534MB 1.363MB

Null Scan 192.168.1.40-
50

All ports
(*)

27.08.16
11:46

57.8s 8 Hosts 1.539MB 1.358MB

UDP Scan 192.168.1.40-
50

All ports
(*)

27.08.16
11:49

17675.36s 8 Hosts 4.437MB 6.91MB

Quick Scan 192.168.1.40-
50

All ports
(*)

27.08.16
18:17

28.74s 8 Hosts 35.900KB 28.716KB

Intense Scan 192.168.1.40-
50

All ports
(*)

27.08.16
18:23

57.98s 8 Hosts 1.683MB 1.376MB

Slow
comprehensive
Scan

192.168.1.40-
50

All ports
(*)

27.08.16
19:21

125.37s 8 Hosts 370.604KB 299.608KB

Aggressive
Scan

192.168.1.40-
50

All ports
(*)

27.08.16
19:45

186.78s 8 Hosts 1.324MB 1.391MB

Nmap scanning tool works fine with all scan types except the UDP scan. As illustrated in

Figure 17, the UDP scan duration took very long to complete to the point where that scan was

stopped before it finished scanning. It suggested that Nmap is not the right tool for UDP scan

as it waits response from each port. If the target port does not respond, the Nmap retries a

couple of times before moving on to the next port. This is due to the fact that open and filtered

ports barely send any response which forces Nmap to timeout. Other scanners such

as Unicorn tend to scan all ports simultaneously and do not wait for a response. Unsurprisingly,

it took the aggressive scan 186.78 seconds to finish which makes it the slowest among the scan

types.

4.2.3. HTTP Response Time (Lowest impact)

The speed in which the HTTP server can be connected is often referred as the HTTP response

time and is measured in milliseconds (ms). Using PRTG to monitor the HTTP sensor and

examine its performance during the scan process, it was observed that the average web loading

times has increased. In Figures 18-21, there are some peaks in the web loading times during

the scan where the intense scan had the minimum loading time of (117msec).

• Slow comprehensive scan

Figure17: Results for different scan techniques

 Fig 18: Slow Comprehensive Scan

Null Scan

 Fig 19: Null Scan

Intense scan

 Fig 20: Intense Scan

Quick scan

 Fig 21: Quick Scan

4.2.4. HTTP Response Time (Highest impact)

During this experiment the scan with the highest impact on the network performance were

captured and was concluded that the ACK scan and the aggressive scan seemed to add more

overhead in the network than any other scan type. As could be seen in figures 22 and 23

respectively. The maximum response time in the ACK scan is 340 msec, while with aggressive

scan the loading time slightly decreases to 204 msec compared to the ACKS scan.

Aggressive scan ACK scan

 Fig 22: Aggressive Scan. Fig 23: ACK Scan

5. Conclusion and Recommendations:

This report provides an in depth analysis of port scan techniques with extensive information of

each scan technique. Two experiments have been conducted. During the first experiment, a

TCP scan using a bespoke tool was conducted. The result showed that the network performance

was slow during the scan. The scanner was executing the scan from the internet (external

network) while the firewall was processing the scan packets and dropping them, the internal

network users were encountered an increased access time to the external servers due to the

scan. In the second experiment, we compared the accuracy and performance of different types

of port scans. The result showed evidently that Nmap is not the right tool to perform UDP scan

as open and filtered ports rarely send any response which makes Nmap to timeout before

attempting and retrying few more times. The TCP full connect had the least impact in terms of

performance considering the packets sent, packets received and scan duration. Because this

scan does not need to write raw packets but instead uses the connect () system call of the

operating system. However, a drawback for this technique is very easily detected. With regards

to the OS detection accuracy, the python port scan script has shown comprehensive information

about the target machine, but the goal here was to determine the most accurate technique using

Nmap tool. According to the OS detection accuracy results, the Intense and Slow

Comprehensive scans were the most accurate with 98% accuracy and have displayed much

detailed information compared to other scan types. The author hopes that the results presented

in this report will aid security

	1. Introduction
	2. Problem Definition
	3. Testbed setup
	3.1. Installation Phase
	3.1.1. Monitoring Software

	4. The Conducted Experiments:
	4.1. The First Experiment
	4.1.1.1. ICMP Latency:
	4.1.1.2. HTTP Latency
	4.1.1.3. FTP Latency
	4.1.2. Analysing Iptables log file with PSAD

	4.2. The Second Experiment
	4.2.1. Scan Accuracy
	4.2.2. Performance
	4.2.4. HTTP Response Time (Highest impact)

	5. Conclusion and Recommendations:

